logsys v2

Steven Dake
October 2008



Major Goals

* Flight recorder of logs and events for analyzing
field failures (segfaults)

* High performance non-display tracing system
* High performance display logging system

* Maintain most features of logsys vl

* Sanitize API where possible

* Simplify/remove locking implementation



Flight Recorder

* Data block stored at segmentation fault or
assertion which maintains chunked circular array
of events leading up to failure

— Use case: service engine fails, but the backtrace
doesn't provide enough information to analyze what
went wrong 20 events ago...

* Tracing events (high volume) are separate
constructs from logging messages (low volume)




Flight Recorder —
Information Recorded

* Subsystem name
* Record Identifier
* C Filename

* C Function name
* File line number

* Up to 64 variable length arguments



Flight Recorder —
Special Cases

* Logging messages recorded to tlight recorder as
special record identifier with log message as
argument

* Entering and leaving of functions recorded to
flight recorder as special record i1dentifier

* Future possibility for tracing levels to be
specified in the record identifier



Logsys v2 Performance

Operatons/Sec of Various Functions
2500000

2000000

B v1 log_printf
B v2 log_printf
Ov2log_rec
B sprintf

1500000

1000000

Operations/Sec

500000

0

sprintf prints a log message to a buffer with the argument “recordA”.
log_rec records an event with the argument “recordA” through the flight
recorder.

log_ printf both v1 and v2 does not display the log output, but executes all
other code paths.

Tested on 2ghz Thinkpad T60.



Logsys v2 Usage API

* log_rec (REC_IDENT, argumentN ptr,
argumentN length, (any other arguments),
LOG_REC_END);

* log_printt (level, printf_format_string,
arguments);

* ENTER();
* LEAVE():



log_printf Formatting

* A formatting string can be specitied during
initialization to control display of logging
information

— %s subsystem, %n function name, %f filename, %I
fileline, %0p priority, %t timestamp, %b buffer

— A number between % and the control character
specifies the width of the field

* Example formatting string “[%6s] %b”

— [MAIN ] Corosync Executive Ready.




APl Changes

LOGSYS_DECLARE_SYSTEM, logsys_init take two additional arguments:

— format — The formatting string used for the logging output
— {lt_size — Size of the flight recorder buffer in 32 bit words

The following log modes are removed:

- LOG_MODE_DISPLAY_PRIORITY, LOG_MODE_DISPLAY_TIMESTAMP,
LOG_MODE_DISPLAY_FILELINE, LOG_MODE_BUFFER_ BEFORE_CONFIG,
LOG_MODE_FLUSH_AFTER_CONFIG, LOG_MODE_SHORT_FILELINE

The following log modes are added

- LOG_MODE_FORK - The application will later call logsys_fork_completed()
- LOG_MODE_THREADED - Operate in a threaded non-blocking mode

New API logsys_fork_completed() to indicate any runtime configuration is completed and any fork
to detach the tty has occurred and the worker thread can be initialized.



Conclusion

Trace events and log events have separate meanings. They are
separated in the APIL.

Use log_rec(), ENTER(), LEAVE() for super high performance
failure analysis tracing while leaving it in the source tree at all
times for developers to use.

Use log_printf() for informational messages that the user can
understand.

The logsys v2 code 1s superior in terms of performance and
functionality.

If you find log_rec too hard to use, full vl semantics of log_printf
are supported.




