

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
1(33�)

Carrier Grade Operating Systems
Gap Analysis

Version 2.0, October 23, 2007

Copyright © 2007 SCOPE Alliance. All rights reserved.

The material contained herein is not a license, either expressed or implied, to any IPR
owned or controlled by any of the authors or developers of this material or the SCOPE
Alliance. The material contained herein is provided on an “AS IS” basis and to the maxi-
mum extent permitted by applicable law, this material is provided AS IS AND WITH ALL
FAULTS, and the authors and developers of this material and SCOPE Alliance and its
members hereby disclaim all warranties and conditions, either expressed, implied or
statutory, including, but not limited to, any (if any) implied warranties that the use of the
information herein will not infringe any rights or any implied warranties of merchantability
or fitness for a particular purpose.

Also, there is no warranty or condition of title, quiet enjoyment, quiet possession, corre-
spondence to description or non-infringement with regard to this material. In no event will
any author or developer of this material or SCOPE Alliance be liable to any other party
for the cost of procuring substitute goods or services, lost profits, loss of use, loss of
data, or any incidental, consequential, direct, indirect, or special damages whether under
contract, tort, warranty, or otherwise, arising in any way out of this or any other agree-
ment relating to this material, whether or not such party had advance notice of the possi-
bility of such damages.

Questions pertaining to this document, or the terms or conditions of its provision, should
be addressed to:

SCOPE Alliance,
c/o IEEE-ISTO
445 Hoes Lane
Piscataway, NJ 08854
Attn: Board Chairman

Or

For questions or feedback, use the web-based forms found under the Contacts
tab on www.scope-alliance.org

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
2(33�)

Table of Contents
1 Purpose..3
2 Audiences ..4
3 References...4
4 Overview ..5
5 Terms and Definitions ..6
6 Gap Summary ..10
7 Gap Descriptions..13

7.1 Availability ...13
7.1.1 Fault-Resistant File System (CGOS-1.1) ...13

7.2 Performance..16
7.2.1 OS Tunable Parameters Enhancements (CGOS-2.1)16

7.3 Security ...16
7.3.1 Trust Mechanisms (CGOS-3.1)..16
7.3.2 Signed Executables (CGOS-3.2) ...17
7.3.3 Unified Cryptographic Framework (CGOS-3.3)..18
7.3.4 Role-Based Access Control (CGOS-3.4) ...19

7.4 Serviceability ...20
7.4.1 Efficient Process CPU Usage (CGOS-4.1) ..20
7.4.2 Functional Conformance Validation with CGL 4.0 (CGOS-4.2)21
7.4.3 Persistent Shared Memory (CGOS-4.3)...22
7.4.4 Coherent User and Kernel Tracing Framework (CGOS-4.4)23
7.4.5 Coarse Resource Enforcement (CGOS-4.5)..24

7.5 Standards ..24
7.5.1 IP Routing and Forwarding (CGOS-5.1) ..24
7.5.2 IPv6 Extensions (CGOS-5.2) ...25
7.5.3 Layer 2 Tunneling Protocol Support (CGOS-5.3)...26

7.6 Hardware...26
7.6.1 Discovery of Platform CPU Architecture (CGOS-6.1)26
7.6.2 Latency API for SMP / Multi-Core Programming (CGOS-6.2)......................27

8 Conclusion ...28
9 Appendix ..30

9.1 Functional Considerations...30
9.1.1 Driver Hardening ..30

9.2 Non-Functional Considerations ...31
9.2.1 Application Binary Compatibility ...31
9.2.2 Application Compatibility between Distributions...32
9.2.3 Extended Support Model..32

9.3 Erratum..33
9.3.1 POSIX Memory Protection ...33

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
3(33�)

1 Purpose
A group of Network Equipment Providers (NEPs) formed the SCOPE Alliance with the
intent of developing profiles for, and identifying gaps in, existing open specifications. The
SCOPE Alliance further aims to prioritize the importance of implementing these various
aspects of the specifications in the Carrier Grade Base Platform (CGBP) ecosystem.
NEPs have an overriding requirement for hardware and software in their telecommunica-
tions applications and services, specifically, that they are “Carrier Grade” with all of the
high availability, reliability, failover capability, serviceability, scalability and performance
that this term implies.

More and more parts of Carrier Grade Base Platforms are specified by industry initia-
tives, and are built with existing hardware and software components. This trend enables
the development of a vibrant ecosystem of suppliers of Commercial-Off-The-Shelf
(COTS) hardware and software and Free Open Source Software (FOSS) from which
NEPs can obtain a majority of their CGBP hardware and software components. Develop-
ing and manufacturing their own components can be a significant investment, which dis-
tracts NEPs from their focus of providing their customers with best-in-breed solutions.

To enable and encourage such a vibrant ecosystem, the SCOPE Alliance is identifying,
prioritizing and publishing lists of suggested open standards, specifications and associ-
ated content that best enable the member companies of the SCOPE Alliance to deliver
solutions that fit their customers’ needs. The published profiles identify the key capabili-
ties required from each open standard or specification. Well-defined profiles aim to en-
courage the broadest possible ecosystem of suppliers from which to choose CGBP
hardware and software components — characterized by multiple vendors, interchange-
ability and compatibility of components, and application portability. The SCOPE Alliance
is also identifying gaps in existing open standards and specifications.

This document discusses enhancements required for operating system products to be
appropriate for the CGBP environment. Many operating system vendors, irrespective of
whether they have a Carrier Grade Linux (CGL) offering, have used the CGL specifica-
tions as a surrogate for the NEPs’ requirements. The CGL specifications provide lists of
attributes that a Linux distribution is expected to implement.

This document identifies gaps in the Linux Foundation (formerly OSDL) CGL 4.0 specifi-
cation. The term gap, as used in this document, is a feature that is not included in the
CGL 4.0 specification but that the SCOPE Alliance strongly believes should be added to
the CGL specification. If such a feature is included in open source projects outside the
stock Linux kernel [31], it is still regarded as a gap.

The intent of this document is three-fold:

• To highlight gaps in the Linux Foundation CGL 4.0 specification.

• To provide guidelines and direction to the Linux Foundation, CGOS vendors and
other industry or standards bodies.

• To foster the creation of projects by:

o Carrier Grade Operating System vendors

o Network Equipment Providers

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
4(33�)

o The Linux Foundation.

This CGOS Gap Analysis document is a living, changeable document that will be the ba-
sis for further investigations of the Linux operating system by the SCOPE Alliance.

2 Audiences
This CGOS Gap Analysis document is intended for the following audiences:

• Board and module vendors that use a Carrier Grade Operating System in
their Network Elements and NEP applications built on Carrier Grade Base
Platforms

• Carrier Grade Operating System implementers and providers

• The Linux Foundation, other specification bodies, special interest groups and
related trade associations, which might find this information useful for defining
new requirements or developing modifications to existing requirements

• The open source community at large.

3 References
1. J. N. Herder, H. Bos, B. Gras, P. Homburg and A. S. Tanenbaum, Failure Resil-

ience for Device Drivers, Proceedings of the 37th IEEE/IFIP International Confer-
ence on Dependable Systems and Networks, Edinburgh, UK, June 2007.

2. IETF RFC 2307, LDAP, http://www.ietf.org/rfc/rfc2307.txt
3. IETF RFC 2401, IPSec, http://www.ietf.org/rfc/rfc2401.txt
4. IETF RFC 2460, IPv6, ftp://ftp.isi.edu//in-notes/rfc2460.txt
5. IETF RFC 2661, L2TP, http://www.ietf.org/rfc/rfc2661.txt
6. IETF RFC 3530, NFSv4, http://www.ietf.org/rfc/rfc3530.txt
7. IETF RFC 3931, L2TPv3, http://www.ietf.org/rfc/rfc3931.txt
8. Linux Standard Base (LSB), http://www.linuxbase.org
9. Open Group Base Specifications, Issue 6, IEEE Std 1003.1, 2004 Edition,

http://www.opengroup.org/onlinepubs/009695399/helf/codes.html
10. OSDL CGL Requirements Definition Overview, Version 4.0,

http://developer.osdl.org/dev/cgl/cgl40/cgl40-overview.pdf
11. OSDL CGL Availability Requirements Definition, Version 4.0,

http://developer.osdl.org/dev/cgl/cgl40/cgl40-availability.pdf
12. OSDL CGL Clusters Requirements Definition, Version 4.0,

http://developer.osdl.org/dev/cgl/cgl40/cgl40-cluster.pdf
13. OSDL CGL Serviceability Requirements Definition, Version 4.0,

http://developer.osdl.org/dev/cgl/cgl40/cgl40-serviceability.pdf
14. OSDL CGL Performance Requirements Definition, Version 4.0,

http://developer.osdl.org/dev/cgl/cgl40/cgl40-performance.pdf
15. OSDL CGL Standards Requirements Definition, Version 4.0,

http://developer.osdl.org/dev/cgl/cgl40/cgl40-standard.pdf
16. OSDL CGL Hardware Requirements Definition, Version 4.0,

http://developer.osdl.org/dev/cgl/cgl40/cgl40-hardware.pdf
17. OSDL CGL Security Requirements Definition, Version 4.0,

http://developer.osdl.org/dev/cgl/cgl40/cgl40-security.pdf
18. PICMG 3.0 – AdvancedTCA™ Base Specification, PICMG 3.0, Revision 1.0, De-

cember 2002, PCI Industrial Manufacturers Group

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
5(33�)

19. PKCS #11 Cryptographic Token Interface Standard, Version 2.20, June 2004,
RSA Laboratories, ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf

20. SCOPE AdvancedTCA™ Hardware Profile, Version 2.0,
http://www.scope-alliance.org/pr/SCOPE-ATCA-Profile-v2.0.pdf

21. SCOPE AMC Port Map Gap Analysis, Version 1,
http://www.scope-alliance.org/pr/SCOPE-AMC-Port-Map-Gap-Analysis-v1.pdf

22. SCOPE Carrier Grade Middleware Profile, Version 1.0,
http://www.scope-alliance.org/pr/SCOPE_CG_Middleware_profile_v1.0.pdf

23. SCOPE Definition Profile, http://www.scope-alliance.org/docs/Services-Profile_Service-
Availability_v1.0.pdf

24. SCOPE Linux Profile, Version 1.0, http://www.scope-alliance.org/pr/SCOPE-linux-profile-v1.pdf
25. SCOPE Linux Profile, Version 1.1, http://www.scope-alliance.org/pr/SCOPE_Linux_profile-v1.1.pdf
26. SCOPE Linux Profile, Version 1.2, http://www.scope-alliance.org/pr/SCOPE-Linux-Profile-v1.2.pdf
27. Scoping the SCOPE: Closing the Gaps of an Open Carrier Grade Base Platform,

Version 1.1, http://www.scope-alliance.org/pr/scope-technical-position.pdf
28. Service Availability Forum, Application Interface Specification,

http://www.saforum.org/specification/AIS_Information/
29. Service Availability Forum, Hardware Platform Interface,

http://www.saforum.org/specification/HPI_specification/
30. Service Availability Forum, Systems Management Interfaces,

http://www.saforum.org/specification/SMS/
31. Stock Linux Kernel, http://www.kernel.org/
32. The Linux Foundation, http://www.linux-foundation.org
33. The Linux Foundation, About Carrier Grade Linux (CGL)

http://www.linux-foundation.org/en/Carrier_Grade_Linux

4 Overview
The Carrier Grade Operating System (CGOS) Working Group of the SCOPE Alliance
has reviewed the Carrier Grade Linux (CGL) 4.0 requirements specification. The CGL
requirements specification was written by the CGL Working Group that was originally
part of the Open Source Development Laboratory (OSDL). This group is now a Linux
Foundation Working Group. See http://www.linux-foundation.org

The CGL requirements specification intends to demonstrate the applicability of Linux to
Carrier Grade (CG) environments. It intends to enhance that applicability by describing
additional functionality required by such environments and to guide the community in
producing future versions of Linux. The CGL requirements specification addresses the
topics of availability, performance, security, serviceability, standards, hardware and clus-
ters. The most recent version of the CGL requirements is CGL v4.0 [10]-[17].

Telecommunication systems and applications have critical requirements for reliability and
quality. In the past, Network Equipment Providers (NEPs) achieved these requirements
by producing their own CG environments that included custom operating systems and
infrastructure. Today, every NEP is attempting to reduce costs by using COTS and
FOSS operating systems and, to the maximum extent possible, infrastructure software.
The SCOPE Alliance is attempting to highlight areas in COTS and FOSS operating sys-
tems that need to be improved to achieve the CG requirements. In many cases, these
changes have general applicability, and will help the operating systems adopting them to
become more resilient, scalable and capable.

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
6(33�)

Given that most CGOS vendors use the CGL requirements specifications to identify ca-
pabilities to include in their offerings, the SCOPE Alliance believes that identifying areas
in those specifications that require more clarity or additional capabilities is the most use-
ful mechanism for communicating the needs of the NEPs to those vendors.

5 Terms and Definitions
 Term Definition

3DES Triple Data Encryption A block cipher formed from the Data Encryption
Standard (DES) cipher by using it three times.

AES Advanced Encryption
Standard

A block cipher used for encryption; a successor to
the Data Encryption Standard (DES).

API Application Programming
Interface

An interface that a computer system or program
library provides to support requests for services
from it by an application.

ATCA Advanced Telecommunication
Computing Architecture or
AdvancedTCA™

A specification targeted at requirements for carrier
grade communications equipment.

CDR Call Detail Record A record containing information relating to a single
call or session.

CG Carrier Grade A term for public switched telecommunications net-
work products and services that must provide su-
perior reliability and quality.

CGBP Carrier Grade Base Platform A computer system comprising hardware and soft-
ware (operating system and middleware) that satis-
fies the CG requirements.

CGL Carrier Grade Linux A set of requirements published by the Linux
Foundation for availability, clusters, performance,
security, serviceability, standards and hardware, in
order for Linux to be considered ready for use
within the telecommunications industry.

CGOS Carrier Grade Operating
System

An operating system that implements the CG
requirements.

COTS Commercial-Off-The-Shelf Software or hardware products, that are ready-
made and available for general sale and use.

CPU Central Processing Unit A component of a computer that is capable of exe-
cuting a program, i.e., a processor.

DBE Double Bit Error Two incorrect bits in a word or a message.

DH Diffie Hellman A cryptographic protocol for key exchange that al-
lows two parties to establish a shared secret key
over an insecure communication channel.

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
7(33�)

DSA Digital Signature Algorithm A type of asymmetric cryptographic algorithm used
to provide authentication in digital (rather than writ-
ten) form that uses a private key for signing a mes-
sage and a public key for verifying the signature.

ECC Error Correcting Code A method for correcting errors that is used in data
storage and data transmission, often without the
operating system being aware of it.

FOSS Free Open Source Software Software provided under an open source software
license.

IKE Internet Key Exchange The protocol used to set up a Security Association
(SA) in the IPSec protocol suite.

IP Internet Protocol A protocol in the Internet protocol stack that uses
packet switching and that provides unique global
addressing.

IPSec Internet Protocol Security A suite of protocols for securing IP communication
by authenticating and/or encrypting IP packets.

JCE Java Cryptography Extension Java APIs for several encryption mechanisms.

L2TP Layer 2 Tunneling Protocol A protocol for tunneling network traffic that is used
to carry PPP traffic and to support VPNs.

LDAP Lightweight Directory Access
Protocol

A protocol for querying and modifying directory
services running over TCP/IP.

LF Linux Foundation A non-profit organization dedicated to the ad-
vancement of the Linux kernel; formed in January
2007 as a merger of the OSDL and the Free Stan-
dards Group. See http://www.linux-foundation.org

LSB Linux Standard Base Specifications that standardize the internal struc-
ture of Linux operating systems.

MC2 MF | SHM | MPR Memory Mapped Files or Shared Memory Objects
or Memory Protection (as defined below).

MF Memory Mapped File File mapping is the association of a file's contents
with a portion of the address space of a process.

MPR Memory Protection A way in which an operating system controls mem-
ory usage on a computer to prevent processes
from accessing the memory of other processes.

NEP Network Equipment Provider A company that provides telecommunications
equipment.

NFS Network File System A computer’s file system that supports sharing of
files, printers and other resources as persistent
storage over a computer network.

NIS Network Information Service A client-server directory service protocol for distrib-

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
8(33�)

uting system configuration data such as user and
host names between networked computers.

NUMA Non-Uniform Memory
Architecture

A computer memory design for multi-processors,
where the memory access time depends on the
memory location relative to a processor.

OS Operating System A set of computer programs that manage the
hardware and software resources of a computer.

OSDL Open Source Development
Labs

See Linux Foundation (LF).

PICMG PCI Industrial Computer
Manufacturers Group

An organization of industrial computer
manufacturers that produced the AdvancedTCA™
specification.

PPP Point to Point Protocol A protocol used to establish a direct connection
between two nodes.

PSM Persistent Shared Memory An area of memory containing information that is
available across operating system reboots.

RADV Router Advertisement A list of a router's addresses on a given interface
and their preference for use as a default router.

RAID Redundant Array of
Independent Disks

An umbrella term for data storage schemes that
divide and/or replicate data among multiple hard
drives.

RBAC Role-Based Access Control An approach to restricting system access to
authorized users.

RSA Rivest Shamir Adleman An algorithm for public key cryptography that can
be used for both encryption and digital signatures,
which involves a public key for encrypting mes-
sages and a private key for decrypting them.

SAD Security Association Database A database that contains Security Associations
(SAs), where a SA is a set of security information
that describes a particular kind of secure connec-
tion between two devices.

SBE Single Bit Error One incorrect bit in a word or a message.

SHA1 Secure Hash Algorithm 1 A cryptographic hash function that computes
a fixed-length digital representation (digest) of
a message.

SHM Shared Memory Object An object that represents memory that can be
mapped concurrently into the address spaces of
multiple processes.

SMP Symmetric Multi-Processor A multi-processor computer architecture in which
two or more identical processors are connected to
a single shared main memory.

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
9(33�)

SMT Simultaneous Multi-Threading A technique for improving the efficiency of super-
scalar CPUs that permits multiple independent
threads of execution to better utilize the resources.

SNMP Simple Network Management
Protocol

A protocol used by network management systems
to monitor network-attached devices for conditions
that warrant administrative attention.

SPD Security Policy Database A database that contains Security Policy (SPs),
where a SP is a rule that is programmed into the
IPSec implementation that tells it how to process
datagrams that a device receives.

SSH Secure Shell A protocol that allows data to be exchanged over
a secure channel between two computers, using
encryption and authentication.

SSL Secure Sockets Layer Cryptographic protocols that provide secure com-
munications over the Internet; the predecessor of
Transport Layer Security (TLS).

TPM Trusted Platform Module A facility for secure generation and use of crypto-
graphic keys.

VLAN Virtual Local Area Network A method of creating independent logical networks
within a physical network.

VPN Virtual Private Network A communication network tunneled through an-
other network, and dedicated to a specific purpose.

VRF Virtual Routing and
Forwarding

A technology used in computer networks that al-
lows multiple instances of a routing table to co-
exist within the same router at the same time.

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
10(33�)

6 Gap Summary
The SCOPE Alliance CGOS Working Group has identified 16 gaps in the CGL specifica-
tions. Some of these capabilities exist in certain operating system releases but not in all
of them. In other cases, they appear to be missing in almost all commonly used operat-
ing system products.

The gaps presented in this document identify features that the SCOPE Alliance regards
as requirements that should be added to the CGL specifications. In the terminology of
the CGL specification, all of the gaps are regarded as “mandatory” throughout this docu-
ment, the gaps are prioritized as High, Medium and Low, which are defined as follows:

• High - Start implementation now.

• Medium - Start implementation as soon as possible.

• Low - Start implementation as soon as the gaps prioritized as High and
Medium have been implemented.

The priorities of the gaps give advice to the community on their relative importance and
the order in which to implement them, as the Scope Alliance sees it.

The gaps are shown below in tabular form grouped according to the existing CGL speci-
fication taxonomy, which comprises the following seven categories:

1. Availability
2. Performance
3. Security
4. Serviceability
5. Standards
6. Hardware
7. Clusters.

The categories into which these gaps are placed are recommended, rather than manda-
tory. There are no gaps for the Clusters category.

Detailed descriptions of the gaps are presented in Section 7 of this document.

Availability

GAP ID Name Description Priority

CGOS-1.1

Fault-Resistant
File System

To provide a robust fault-resistant file system that
can maintain file and data integrity, despite faults
and reboots that occur while the data are being
upgraded.

Medium

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
11(33�)

Performance

GAP ID Name Description Priority

CGOS-2.1

OS Tunable
Parameters
Enhancements

Detailed documentation for operating system
tunable parameters, and notification when
thresholds are exceeded.

High

Security

GAP ID Name Description Priority

CGOS-3.1

Trust Mechanisms Support for basic trust mechanisms, including
secure boot, remote attestation, secure storage.

Medium

CGOS-3.2 Signed Executables Validation of software images before use. Medium

CGOS-3.3 Unified
Cryptographic
Framework

Framework that supports encryption and mes-
sage hashing for both kernel and user applica-
tions, secure tamper-proof storage for security-
relevant data, and registration of cryptographic
capabilities.

Medium

CGOS-3.4

Role-Based
Access Control

Support for the notion of a role with a name and
a set of commands, along with the abilities to
assign a set of privileges when commands are
executed, to assign a list of users authorized to
assume a role, and to log and audit role actions.

Medium

Serviceability

GAP ID Name Description Priority

CGOS-4.1

Efficient Process
CPU Usage

To provide a summary of overall CPU usage for
highly threaded applications, including user, sys-
tem and interrupt mode execution.

Medium

CGOS-4.2

Functional
Conformance
Validation with
CGL 4.0

A set of tests that can verify functionality of the
requirements of the CGL 4.0 specification.

High

CGOS-4.3 Persistent Shared
Memory

Reserves a section of persistent shared memory
for critical data, so they are available after sys-
tem reboot, which is useful for diskless systems.

Medium

CGOS-4.4

Coherent User and
Kernel Tracing
Framework

Lightweight framework for use in production sys-
tems that incorporates a unified view of user and
kernel tracing.

Medium

CGOS-4.5

Coarse Resource
Enforcement

Resource usage enforcement on a larger than
per-process basis such as a user ID or some
other meta-object.

Low

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
12(33�)

Standards

GAP ID Name Description Priority

CGOS-5.1

IP Routing and
Forwarding

Support for Virtual Routing and Forwarding for
the Internet Protocol.

High

CGOS-5.2 IPv6 Extensions Extensions to IPv6 including NFS and NIS. Medium

CGOS-5.3 L2TP Support Support for the Layer 2 Tunneling Protocol. Medium

Hardware

GAP ID Name Description Priority

CGOS-6.1

Discovery of
Platform CPU
Architecture

Discovery of the topology and other details of a
platform’s CPU architecture, such as the number
and the sizes of the caches, to facilitate SMP
programming.

Low

CGOS-6.2

Latency APIs for
SMP / Multi-Core
Programming

Support for the notions of latency domain and
locality domain, and APIs that allow a process to
determine locality domain characteristics, such
as the memory latency, and the communication
latency between processes.

Medium

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
13(33�)

7 Gap Descriptions

7.1 Availability

7.1.1 Fault-Resistant File System (CGOS-1.1)

7.1.1.1 Purpose

To provide a robust fault-resistant file system that can maintain file and data integrity,
despite faults and reboots that occur while the data are being upgraded.

7.1.1.2 Description
Applications and deployment scenarios in Carrier Grade telecommunication environ-
ments need to provide a robust fault-resistant file system for the CGOS, with:

• Data integrity protection by means of internal checksums

• Data integrity model that guarantees file system metadata and data consis-
tency and fast recovery in the presence of incomplete updates due to unex-
pected reboots

• Data integrity model that minimizes the impact of corruption of essential data

• Online integrity / consistency checking and recovery facilities

• Protection from unexpected multiple accesses

• Resource allocation guarantees.

In addition, the file system for the CGOS needs to support continuous availability of ser-
vice, so that the majority of administrative tasks can be performed online without service
interruption, and also deployment and upgrade capabilities required by Carrier Grade
telecommunication environments.

Data integrity models, consistency checks and recovery
The CGOS needs to provide support for a fault-resistant file system to ensure that the
data presented to the applications are correct. Studies have indicated that disk drives
have larger than expected failure rates. Even if a disk drive does not fail completely,
marginal components within the system such as power supplies or components within
the drive can cause intermittent failures, which generally are hard to reproduce.

Engineers writing file systems often assume that the underlying storage medium support-
ing the file system is reliable or that errors encountered in the storage medium are han-
dled transparently by the medium. When these assumptions are not borne out in reality,
problems can occur. Incorrect metadata can cause file system corruption or a system
panic. Bad data presented to an application can lead to incorrect decisions in program
logic, unexpected termination of programs, or programs that are not able to progress.

Mirroring data is not the complete answer, because mirroring requires that all copies of
the data in the mirror are identical and correct, and that any mirror can be used with
equal safety. A hardware Redundant Array of Independent Disks (RAID) can provide lim-

��2SXIH�MR�STIR�WIWWMSR
��XLEX�QER]�SJ�XLI
��VIUYMVIH�JIEXYVIW
��[MPP�FI�TVIWIRX�MR
��RI\X�KIR�0MRY\
��JMPIW]WXIQW
���I\X�#�&86*7#

��2SVXIP�WYKKIWXIH
��XLIMV�86*7�QMKLX�FI
��E�TSWWMFPI�GERHMHEXI�EW
��[IPP�FYX�[ERXIH�XS�
��IZEPYEXI�&86*7�XS�
��HIXIVQMRI�XLI�WYMXEFMPMX]
��XS�XLIMV�RIIHW�SV�XLI�
��TSWWMFPI�GSRXVMFYXMSR�
��SJ�86*7�FEGO�XS�XLI�
��GSQQYRMX]

��%PWS�RSXIH�MR�XLI�STIR
��WIWWMSR�XLEX�JMPIW]WXIQ
��GSRXVMFYXMSRW�QMKLX�FI
��IEWMIV�XS�KIX�EHSTXIH
��MRXS�QEMRPMRI�XLER�QER]
��SXLIV�JIEXYVIW

��'+0�;+�JIIPW�XLMW�VIUYMVIQIRX�WLSYPH
FI�FVSOIR�HS[R�MRXS�WIZIVEP�MRHMZMHYEP
VIUYMVIQIRXW��TVSFEFP]�SRI�JSV�IEGL�FYPPIX
TSMRX�MR�XLI�HIWGVMTXMSR�

��2IIH�E�WTIGMJMG�HIJMRMXMSR�SJ
���IWWIRXMEP�HEXE��LIVI���(EXE
��VIUYMVIH�XS�VITEMV���VIFYMPH�*7#
��7SQI�QIERW�SJ�GPEWWMJ]MRK
��HEXE�EGXYEPP]�FIMRK�[VMXXIR
��XS�XLI�JMPIW]WXIQ#
��7SQIXLMRK�IPWI#

��;LEX�HSIW
�YTKVEHIH��QIER
LIVI#��9THEXIH#
3V�MW�XLMW�E
VIUYMVIQIRX�JSV
MR�WIVZMGI�*7
HVMZIV�YTKVEHIW#

��2);�+%4��MW
XLMW�VIUYMVIQIRX
QIX�F]�PSGOMRK�EX
XLI�JMPIW]WXIQ��
YWIVWTEGI�PIZIP#

��2);�+%4

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
14(33�)

ited protection, but does not protect against errors introduced by the controller itself or on
the path to / from the controller.

What is needed is end-to-end checksums of every in-use block. This requirement is
achieved by computing and storing checksums for data, separate from the data itself,
and by verifying the checksums when the data are read. In a mirrored environment, if a
checksum fails to validate one of the mirrors, other mirrors can be consulted to find valid
data. There are several approaches on how this error detection can be implemented.
The file system itself can provide support for the checksums or the checksums can be
implemented in a block layer solution as a logical volume manager or software RAID.

When the system reboots unexpectedly, it might leave system data partially updated.
The file system needs to employ a data integrity model to guarantee that it can repair
such in-progress updates for both file system data and metadata. If the file system incurs
a power outage in the middle of a data write, committed data must not be lost and the file
system must be recovered to a consistent state. There are several approaches possible
and being employed in existing file systems. The file system can implement journaling or
transactional copy-on-write operations, or can ensure data integrity using ordering of up-
dates (e.g., soft updates). What is required is that data integrity protection is available for
both file system metadata and data.

Recovery from partially completed updates (with whatever data integrity model) does not
provide protection from corruption caused by disk errors, file system bugs, administrator
errors, or other sources. In addition to file system data integrity protection capabilities
outlined above, the CGOS needs to provide online consistency / integrity checking and
recovery.

The impact of potential data corruption must be minimized with a data integrity model
that employs replication of essential data (e.g., mirroring). For example, the loss of a sin-
gle superblock due to disk hardware faults should not cause catastrophic consequences
and render the entire file system data unavailable.

For availability models employed in typical telecommunication environments, there is a
strong emphasis on shared storage. The CGOS file system must be able to protect itself
from corruption caused by unintentional simultaneous access by multiple users in a
shared disk environment.

Support for allocation reservations
Often there is a need for applications to pre-allocate space for file(s) in a file system. Ap-
plications can use this feature to avoid fragmentation to a certain extend and, thus, ob-
tain faster access. With pre-allocation, applications also obtain a guarantee of space for
particular file(s), even if the file system becomes full later.

POSIX defines the posix_fallocate() function, which can be used for a similar purpose.
For traditional Linux implementations, this function is quite slow (because it writes zeroes
to each block that must be pre-allocated). File systems can achieve this pre-allocation
more efficiently within the kernel. It is expected that posix_fallocate(), or its equivalent,
will be modified to benefit from this capability.

��2);�+%4��WSYRHW�PMOI
XLMW�MW�E�GSRGIVR�EFSYX
XLI�TIVJSVQERGI�SJ
TSWM\CJEPPSGEXI�
�ERH�XLI
VIUYMVIQIRX�MW�XS�LEZI
XLI�JYRGXMSREPMX]�EW�TEVX
SJ�XLI�:*7�PE]IV#

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
15(33�)

Online defragmentation

Most file systems are susceptible to performance degradation over a period of time due
to fragmentation of on-disk data, although to different degrees, depending on the specific
file system implementation. The seek performance of traditional mechanical hard drives
is not increasing as rapidly as the disk capacity, i.e., when normalized to capacity, disks
are getting slower. The performance of disks has become increasingly important for the
current generation of disks, processors and networks. The CGOS needs to provide pro-
visioning to reduce the effects of internal fragmentation, either by design or with the help
of online defragmentation facilities or preferably both.

Support for file system snapshots / clones

Snapshots are useful for a variety of backup / upgrade scenarios.

Snapshots provide a useful solution for a "backup window" problem. Full backups usu-
ally take considerable time and are not transactional and atomic. Creation of a snapshot
is usually takes O(1) time, while performing a direct backup usually takes O(size of data)
time.

Writable snapshots (sometimes called “clones”) can be useful in the implementation of a
rollback mechanism in certain upgrade scenarios.

There are several approaches to implement snapshot functionality. Snapshot capabilities
can be implemented as an integral part of the file system or can be provided by a block
device layer (e.g., a logical volume manager or certain hardware RAIDs). Even in the
latter case, some cooperation with the file system layer / tools is needed, because snap-
shots are expected to be taken while the file system is in a quiescent state, e.g., by
committing pending transactions and holding new ones until the snapshot is taken.

Although the implementation of snapshot capabilities at the file system layer is not a pre-
requisite, it might have certain advantages because block-level snapshots are almost
always less space-efficient than direct file system support for snapshots.

Online resizing
As the demand for capacity grows, there are number of scenarios in which the ability to
expand / resize the file system online (e.g., without service interruption) becomes impor-
tant.

Multi-architecture support
The file system metadata must be designed to be agnostic to the host CPU word length
and endianess. As a result, the same file system image can be used by CPUs of differ-
ent hardware architectures (e.g., ia32, x86-64, SPARC, etc), which is useful in certain
hardware upgrade / migration scenarios.

7.1.1.3 Priority
Medium

��2);�+%4��HSIWR�X�WIIQ
XS�FI�GSZIVIH�EFSZI�

��7LSYPH�FI�E�WITEVEXI
KET�

��6I[SVH�XMXPI�XS�VIQSZI
�HIJVEKQIRXEXMSR��WMRGI
XLI�VIUYMVIQIRX�MW�XS
VIHYGI�SV�IPMQMREXI�*7
JVEKQIRXEXMSR� ��2);�+%4��(SIW�&86*7

QIIX�XLMW�VIUYMVIQIRX#

��2);�+%4���*MPIW]WXIQ
RIIHW�XS�FI�EFPI�XS�KVS[
[MXLSYX�FIMRK�YRQSYRXIH#
(SIW�&86*7�HS�XLMW
EPVIEH]#

��2);�+%4��6IUYMVIQIRX�ETTIEVW�XS�FI��XEOI�LEVH�HMWO�%�[MXL
JMPIW]WXIQ�'+37*7�TEVXMXMSRW�SR�MX�SYX�SJ�E�QEGLMRI�[MXL�\��
TVSGIWWSV��TPYK�MX�MR�XS�E�QEGLMRI�[MXL�74%6'�TVSGIWWSV���JSV
I\EQTPI��ERH�XLI�HEXE�WLSYPH�WXMPP�FI�VIEH�GSVVIGXP]����-W�XLMW
GSVVIGX#

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
16(33�)

7.1.1.4 CGL Specification
Availability

7.2 Performance

7.2.1 OS Tunable Parameters Enhancements (CGOS-2.1)

7.2.1.1 Purpose
To document operating system tunable parameters and provide interfaces for delivering
notifications when thresholds associated with such parameters are exceeded.

7.2.1.2 Description
The CGOS needs to provide well-documented tunable parameters and interfaces to sat-
isfy critical performance requirements.

Operating systems offer a set of variables whose values can be manipulated to affect
system performance. The CGOS requires the following enhancements.

The complete set of variables whose manipulation is supported must be documented.
This documentation includes the variable type, default value, range of values supported
by the operating system, variable's purpose, and external performance indications that a
change from the default value would be beneficial.

In addition to knowing how the variables can be tuned, it is important to know when they
should be tuned. Interfaces and mechanisms are needed that provide notifications when
thresholds associated with the variables are exceeded. These interfaces and mecha-
nisms must be subscription-based, with notifications provided only to those that sub-
scribe for them.

The operating system tunable parameters should include all features used by the CGOS
distribution.

7.2.1.3 Priority
High

7.2.1.4 CGL Specification
Performance

7.3 Security

7.3.1 Trust Mechanisms (CGOS-3.1)

7.3.1.1 Purpose
To support basic trust mechanisms, including secure boot, remote attestation and secure
storage.

��(YVMRK�STIR�WIWWMSR�MX
[EW�WYKKIWXIH�'+0
HSGYQIRX�[LEX�XYREFPI
TEVEQIXIVW�EVI�XLIVI
XSHE]��TVSZMHI�XLEX�PMWX
FEGO�XS�7'34)�ERH�EWO
JSV�+%47�JSV�EPP�QMWWMRK
TEVEQIXIVW�

��(MWGYWWMSR�MR�[SVOMRK
WIWWMSR�WYKKIWXIH�SYX�
SJ�HEXI�SV�TEVXMEP
HSGYQIRXEXMSR�[EW
[SVWI�XLER�RSRI��WS�[I
WLSYPH�XYVR�XLI�[LSPI
VIUYMVIQIRX�FEGO�XS
7'34)�[MXL�JSPPS[MRK
WYKKIWXMSRW�

���-W�XLIVI�ORS[R�TEVQW
XLEX�EVI�RSX�HSGYQIRXIH
SV�HSGYQIRXIH�[VSRK#
4PIEWI�PMWX�

���4PIEWI�VI[VMXI�+%4
EZSMHMRK��EPP�WYTTSVXIH�
PERKYEKI�EW�EPP�WYTTSVXIH
XYREFPIW�MR�OIVRIP�EVI
HSGYQIRXIH�MR�0/'�

���4PIEWI�TVSZMHI�QSVI
GSRXI\X�EW�XS�[LEX
STXMSRW�QYWX�FI
HSGYQIRXIH�ERH�LS[�
-W��W]WGXP��E��EHIUYEXI#

��7TPMX�MRXS�RI[�KETW
JSV�IEGL�VIUYMVIH
JIEXYVI�

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
17(33�)

7.3.1.2 Description
The CGOS, and the underlying hardware platform, must provide basic trust mechanisms,
so that a network element has assurance that no one has tampered with it. In particular,
the CGOS needs to provide the following mechanisms.

• Secure boot: All software (including the BIOS and the OS) must be measured
before being loaded or used. After measurement, the system can compare
the measured values with pre-stored values and abort the loading if they do
not match, or at least store the values in a trusted place for later evaluation.

• Remote attestation: In a networked environment, there is a need to ascertain
the integrity of network peers. This feature can be used to exclude compro-
mised base stations from the network.

• Secure storage: Both of the above mechanisms require secure storage, but
secure storage also has other uses. It can be used to store communication
keys for secure protocols, measurement values for both software and hard-
ware, software that should not be reverse engineered, and critical logging
data. The contents of the secure storage must be available only to trusted
software that has been verified during the secure boot.

The Trusted Computing Group’s Trusted Platform Module (TPM) is one way to imple-
ment these mechanisms, although there might also be other ways. If TPM hardware
support is not available, these mechanisms can be implemented with other hardware so-
lutions. Approximate solutions (i.e., not entirely secure solutions) can be implemented
using software; in some cases, such solutions might be better than nothing.

The SCOPE Alliance recognizes that additional definition is required around the details
of this gap; therefore, the Alliance welcomes the opportunity to collaborate with industry
ecosystem partners and specification groups to develop additional specificity in this area.

7.3.1.3 Priority
Medium

7.3.1.4 CGL Specification
Security

7.3.2 Signed Executables (CGOS-3.2)

7.3.2.1 Purpose
To ensure that the software images being used are those that were intended to be used,
without modification or corruption.

7.3.2.2 Description
The CGOS needs to provide the ability to ensure that the system is using the software
distributed by a NEP. See also Trust Mechanisms (CGOS-3.1).

First, it is necessary to ensure that the operating system image being booted has not
been modified since being deployed to where the equipment is located, or since being

��(SIW�841�QIIX�XLI
VIUYMVIQIRXW#��;I�EVI
RSX�GPIEV�XLEX�MX�HSIW
IZIV]XLMRK�HIWGVMFIH�MR
FYPPIXW�EFSZI���-J�841
HSIW��+%4�MW�WEXMWJMIH�

��'+0�FIPMIZIW�XLMW�MW
E�JYRGXMSR�SJ�XLI�&-37
EW�[IPP�EW�XLI�37�ERH
EW�WYGL�GERRSX�FI�QIX
TYVIP]�[MXL�0MRY\���4PIEWI
VI[VMXI�XS�EHHVIWW�0MRY\�
WTIGMJMG�GSQTSRIRXW��3V
EVI�FSSXPSEHIV�QSHMJMGEXMSRW�
WYJJMGMIRX#�%�GSQQIRX�[EW�
QEHI�XLEX�XLIVI�[EW�ER�EXXEGO�
SR�E�FEWI�WXEXMSR
�2SOME�MR�+VIIGI#

��-W�XLMW�+%4�QIX�F]�IRGV]TXJW#
��(IJMRMXIP]�E�KET�
FYX�YRGPIEV�[LEX
MW�VIUYMVIH�JSV�MX�
RIIH�QSVI
GSRXI\X�
��;MPP�841�OI]W
QIIX�XLI�+%4#
��-W�XLMW�MRXIRHIH
XS�EHHVIWW
FSSXMRK�HMWOPIWW
�RSHIW�SR
YRXVYWXIH
RIX[SVOW#

��238)���%JXIV�XLI�[SVOMRK�WIWWMSR��XLMW�HSGYQIRX�[EW�JSYRH�[LMGL�TSWWMFP]�HIWGVMFIW�XLI�VIUYMVIH�GSRXI\X
EVSYRH�VIQSXI�EXXIWXEXMSR�HIWGVMTXMSR���LXXT���HSQMRS�VIWIEVGL�MFQ�GSQ�GSQQ�VIWIEVGLCTISTPI�RWJ�TEKIW�WEMPIV�MQE�LXQP

��RIIH�WTIGMJMG�YWI�GEWIW��VI[VMXI�XS�EHHVIWW
WTIGMJMG�EXXEGO�ZIGXSVW�
��WMKRIH�FMREVMIW�[MPP�RSX�TVSXIGX�EKEMRWX�IRZMVSRQIRX
ZEVMEFPIW�SV�GSRJMKYVEXMSR�JMPI�FEWIH�EXXEGOW
��MW�MX�I\TIGXIH�XLEX�XLMW�[SYPH�FI�MQTPIQIRXIH�EX�XLI
JSVO�I\IG�PIZIP�SJ�XLI�OIVRIP�SV�WSQI[LIVI�IPWI#��;LEX
MQTPIQIRXEXMSRW�EVI�EGGITXEFPI#

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
18(33�)

reloaded from a NEP distribution. This checking must be incorporated within the boot
process.

Additional checking must be performed to verify that all of the images deployed to a loca-
tion have the contents distributed by the NEP. These contents include operating system
images, executable images, file contents and libraries. A desired extension is the ability
to verify an image each time it is loaded into memory for execution. It is also desirable
that the image should be verifiable subsequently during execution.

The ability to sign executables is provided by computing a secure hash of the executable
content, embedding the hash value into the executable, and later verifying that the signa-
ture reflects the original contents of the executable.

The signatures use public-key cryptography where the hash is computed with a private
key held secret by the signer. The signer provides a public key as part of the software
release, which can be used to verify, on request, the integrity of the executable.

In essence, utilities used to sign and verify executables must support the idea of a user
producing signed executables and verifying those signatures with the appropriate private
and public keys.

A future extension would optionally allow the operating system to verify the signatures of
all (or some) of the signed executables before executing them.

Care must be taken to ensure that certificates that have been revoked are not used.

7.3.2.3 Priority
Medium

7.3.2.4 CGL Specification
Security

7.3.3 Unified Cryptographic Framework (CGOS-3.3)

7.3.3.1 Purpose
To provide a cryptographic framework that supports encryption and message hashing for
both kernel and user applications, secure tamper-proof storage for security-relevant data
such as keys, and registration of cryptographic capabilities.

7.3.3.2 Description
The CGOS needs to provide a unified framework for optimized implementations of com-
mon cryptographic (encryption and message hashing) algorithms.

Carrier grade solutions rely on communication protocols that have stringent security re-
quirements. Typically, these protocols are based on standard security application provid-
ers such as SSL, SSH, IKE and JCE.

Data integrity is accomplished through mechanisms (message hashing) that check that
data transmitted across the network or stored on/retrieved from disk without encryption

��2SXIH�MR�STIR�WIWWMSR
XLEX�XLIVI�EVI�QER]�[E]W
XS�EGGSQTPMWL�XLMW�FYX�RS
KSSH��KPYI��GYVVIRXP]�

��;SVOMRK�WIWWMSR�EWOIH
JSV�QSVI�HIXEMP���YWIVWTEGI
PMFVEV]#��OIVRIP�SRP]#�
OIVRIP�OI]VMRKW#
7SQIXLMRK�IPWI�VIUYMVIH#

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
19(33�)

are not modified. Data confidentiality is accomplished through mechanisms (encryption)
that convert the data to a form not easily reversible, before being transmitted or stored.

The use of both encryption and message hashing for data that are transmitted or stored
demands a cryptographic framework that is available to both the kernel and user applica-
tions and that transparently makes use of whatever hardware encryption capabilities are
available.

A prerequisite to the security capabilities described above is the ability to store in a se-
cure, tamper-proof way security-relevant data, such as keys used to verify the integrity of
downloaded data. Keys can be loaded during system assembly, and additional keys can
be provided using a secure mechanism after the system is started. Such a mechanism is
almost always a combination of hardware, operating system and firmware. See also
Trust Mechanisms (CGOS-3.1).

A unified cryptographic framework must expose to security providers a common interface
to algorithms not only for various encryption algorithms (at the very minimum 3DES and
AES) but also for message hashing (MD5, SHA1), message signing (RSA, DSA, DH)
and random number generation. See the RSA cryptographic token interface standard
PKCS #11 [19].

Hardware acceleration is also desirable for carrier grade components that use encryp-
tion. The cryptographic framework must offer mechanisms whereby device drivers can
register the cryptographic hardware. A device with a cryptographic capability (key store,
encryption algorithm) must be able to register the capability with the cryptographic
framework. Registration includes, for example, the type of cryptographic capability,
available algorithms, and number of contexts. When a driver initializes, it must register
any cryptographic capabilities possessed by the device(s) it controls.

When a kernel thread or user process requests that a particular algorithm be used, the
cryptographic framework must try to use the most efficient implementation based on the
availability of resources in a transparent manner.

Algorithms must be easy to export / import, Cryptographic keys must be easily reduced
to 56 bits, or cryptography must be easy to switch off.

7.3.3.3 Priority
Medium

7.3.3.4 CGL Specification
Security

7.3.4 Role-Based Access Control (CGOS-3.4)

7.3.4.1 Purpose
To support the notion of a role with a name and a set of commands, along with the abili-
ties to assign a set of privileges when the commands are executed, to assign a list of us-
ers authorized to assume a role, and to log and audit role actions.

��;LEX�MW�XLI�WTIGMJMG
VIUYMVIQIRX�JSV����FMXW
LIVI�ERH�MW�MX�WXMPP�VIPIZERX#

��'+0�TVSTSWIW�7)0MRY\�EW�XLI�MQTPIQIRXEXMSR
SJ�XLMW�KET�ERH�VIUYIWXW�7'34)�GVIEXI�RI[
KETW�JSV�WTIGMJMG�JYRGXMSREPMX]�QMWWMRK�JVSQ
7)0MRY\�

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
20(33�)

7.3.4.2 Description
The CGOS needs to provide the ability to assign a name and a set of commands to a
role, such that those commands and only those commands can be executed while the
role is assumed.

It must provide the ability to assign a set of privileges (if privileges are defined), or a user
id / group id, when the commands comprising the role are executed.

It must also provide the ability to assign a list of users authorized to assume a role, and
to require that roles are assumed, i.e., a user that has already been authenticated to the
system must “log in” to the role using whatever authentication mechanisms are required.

All role actions, including assuming and releasing a role together with the required cre-
dentials, must be capable of being logged and audited by standard system auditing.

7.3.4.3 Priority
Medium

7.3.4.4 CGL Specification
Security

7.4 Serviceability

7.4.1 Efficient Process CPU Usage (CGOS-4.1)

7.4.1.1 Purpose
To provide a summary of overall CPU usage for highly threaded applications, where the
summary includes user, system and interrupt mode execution.

7.4.1.2 Description
The CGOS needs to provide a summary of overall CPU usage for highly threaded appli-
cations, where the summary includes user, system and interrupt mode execution.

For threaded applications, the overall summary of CPU usage can be derived on de-
mand by scanning all executing threads. For highly threaded applications, doing so is
time consuming. For example, for a threaded application with 100 threads, such scan-
ning will cycle through 100 task descriptors and sum the CPU usage of each thread. In
addition, such scanning can enforce CPU limits on timer tick interrupts. Because the op-
eration is so time consuming for highly threaded applications, enforcing CPU limits can
be done only during tick processing. This mechanism can therefore be easily evaded (in-
tentionally or not).

High availability software often relies on measuring overall process CPU usage.

To resolve this issue, it must be possible to measure the overall CPU time of a highly
threaded application on the fly without any noticeable performance degradation. In addi-
tion, the measurement must satisfy the Precise Process Accounting requirement in the
CGL 4.0 requirements specification. It must also facilitate fast retrieval of process time
usage and enforcement of CPU exhaustion limits in context switching code.

��%GXMSR�XS�XLI�'+0�;+
XS�HIXIVQMRI�MJ�XLMW�MW
EPVIEH]�QIX�F]�MR�OIVRIP
MRJSVQEXMSR�ERH�MJ�WS�
LS[�MX�GER�FI���EPVIEH]�MW
I\TSWIH�

��-W�XLMW�HSRI�ZME�17%#

��-W�XLIVI�WSQI�TMIGI�SJ
44%�XLEX�RIIHW�XS�FI
MQTPIQIRXIH�MR�17%#

��(SIW�'*7�EPVIEH]
GSPPIGX�EPP�XLI�VIUYMVIH
MRJSVQEXMSR#

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
21(33�)

Additional information, such as the time spent in user space waiting for locks and the
time spent handling page faults, is also desired. These measurements cannot rely on
periodic sampling. Each time a state transition occurs in a thread, the time must be re-
corded for each executing thread and the process containing the thread. Summing the
usages of the individual threads might provide acceptable performance for a very small
number of threads, but quickly becomes an unacceptable burden for a large number of
threads.

7.4.1.3 Priority
Medium

7.4.1.4 CGL Specification
Serviceability

7.4.2 Functional Conformance Validation with CGL 4.0 (CGOS-4.2)

7.4.2.1 Purpose
To provide a set of tests that can verify the functionality of the requirements of the CGL
4.0 specification.

7.4.2.2 Description
There needs to be an available set of tests that can verify the functionality of the re-
quirements of the CGL 4.0 specification. Some of these tests will be programmatic; some
will be verification/checklist; and some will be manual.

NEPs need a mechanism to validate the contents of the CGOS when making design
(and purchasing) decisions for network devices. CGOS distributors need a mechanism
to validate the contents of their operating systems and to market or brand appropriately.

Their is a need for a set of tests, scripts and best practices (collectively called the Valida-
tion Procedures) that are easy-to-execute and provide documented or reportable results.
The Validation Procedures must be repeatable across multiple CGOS instances from
different vendors, producing similar output or results. The Validation Procedures should
be modular, so that requirements that are hardware-specific can be excluded to account
for differences in the hardware. They should be as hardware-independent as possible
and account for hardware when necessary. The Validation Procedures should take into
account differences in requirements as follows:

a) Some requirements are programmatically verifiable, but require complex tests.
These tests must be created in a repeatable and scalable manner.

b) Some requirements provide a broad overview of a feature. In these cases, a
checklist is provided to focus on the functionality that must be certified. The
checklist applies to all requirements, and describes the best practices to validate
a feature. The report provides the supporting material that is missing in the re-
quirements and that is needed for certification.

��-W�XLMW�E�VIUYIWX�JSV
XLI�07&�,IEHPIWW
TVSJMPI#��%WO�JSV
GPEVMJMGEXMSR�JVSQ�7'34)�
TVIWIRX�TVSTSWEP�JSV
07&�,IEHPIWW�XS�WII
MJ�XLEX�JYPJMPPW�XLI�KET�

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
22(33�)

c) Some requirements need manual involvement and interpretation for validation,
e.g., pulling hardware and checking the state of the system. An accompanying
checklist documents the steps.

d) Some requirements need vendor support to validate, e.g., SBE/DBE inducing
hardware.

e) Some requirements need support from modified firmware or boot loaders.

f) Many requirements need manual certification by inspection of documentation.

The recommended approach to functional conformance validation is a phased approach,
starting initially with performance and availability.

7.4.2.3 Priority
High

7.4.2.4 CGL Specification
Serviceability

7.4.3 Persistent Shared Memory (CGOS-4.3)

7.4.3.1 Purpose
To reserve a section of Persistent Shared Memory (PSM) that applications can use to
house critical data, so that the data are available after the operating system reboots,
which is particularly useful for diskless systems.

7.4.3.2 Description
The CGOS needs to reserve a section of Persistent Shared Memory (PSM) that applica-
tions can use to house critical data. The CGOS also needs to ensure that this PSM sec-
tion is persistent across operating system reboots, i.e., the contents of the PSM are pre-
served and available to the applications after the operating system reboots. This feature
is particularly useful for, and considered to be higher priority for, diskless systems.

Applications usually have some very critical data, such as call session records, billing
records, logs, stack traces, pending messages, etc. Usually, this information is lost on a
crash and reboot. Some parts of it might have been saved on persistent storage or
transmitted to a management terminal, but other parts of it invariably get lost. Storing this
information in a PSM section ensures that this information is available in memory even
after the operating system comes up again. The information can be sent to a manage-
ment terminal for further analysis after the operating system comes up again.

7.4.3.3 Priority
Medium

7.4.3.4 CGL Specification
Serviceability

��2IIH�YWI�GEWI
GPEVMJMGEXMSR�JVSQ
7'34)���(SIW�[EVQ
VIWIX�GEWI��MI��OI\IG

QIIX�XLI�VIUYMVIQIRX#

��MJ�GSPH�FSSX�SV�JYPP
VIWIX�MW�VIUYMVIH��[MPP
;6�W�TQIQ���TQIQJW
QIIX�XLI�VIUYMVIQIRX#

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
23(33�)

7.4.4 Coherent User and Kernel Tracing Framework (CGOS-4.4)

7.4.4.1 Purpose
To provide a low-overhead, flexible, integrated user and kernel tracing framework.

7.4.4.2 Description
The CGOS needs to provide a coherent user and kernel tracking framework that is safe
to use in production systems.

The CGL 4.0 SFA.2.2 specification [13] discusses “Dynamic Probe Insertion” for the ker-
nel. This model must be extended to include the ability to instrument user applications.
This instrumentation may reside in only an application process or in both an application
process and the kernel. For example, it should be possible to wait for an event to be cap-
tured by kernel tracing and then extract information from the process address space
about what was happening when the event was triggered.

Tracing must be more capable than simply filling a ring buffer when a trace point is hit,
copying the contents of the buffer, writing the data to a file, and then post processing it.
The coherent user and kernel tracing framework must have the following characteristics:

a) Tracing must not cause the system to panic. Panics must not be possible unless
a very specific mode of operation is enabled. Even then, panics must be deliber-
ate. There must be no unexpected side effects.

b) It must be possible to insert static trace points into the kernel or user space that
incur only the overhead of executing noops when they are not active. Thus, de-
bug executables could be shipped as production code and trace points would be
activated only when needed.

c) Tracing must support the ring buffer method mentioned above, as well as the
method whereby the kernel filters events of interest and delivers only those
events that satisfy the filter criteria. Various options such as aggregation should
be considered.

d) It must be possible to have multiple trace sessions active simultaneously even at
the same trace location.

e) Tracing must be able to follow an activity across the user-kernel boundary.

f) Tracing must be able to connect dynamically to the processes being traced. It
must not be necessary to start a process under tracing.

7.4.4.3 Priority
Medium

7.4.4.4 CGL Specification
Serviceability

��(SIW�OIVRIP�QEVOIVW
TVIWIRX�MR��������
QIIX�XLI�VIUYMVIQIRX#

-J�RSX��WIRH�VIUYIWX
FEGO�XS�7'34)�XS�HIJMRI
E�WTIGMJMG�PMWX�SJ
HXVEGI�WX]PI�YWI
GEWIW�XLEX�EVI
VIUYMVIH���-HIEPP]
������XSXEP�

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
24(33�)

7.4.5 Coarse Resource Enforcement (CGOS-4.5)

7.4.5.1 Purpose
To provide the ability to impose resource consumption limits on one or more threads or
processes.

7.4.5.2 Description
The CGOS needs to provide mechanisms that allow resource consumption constraints to
be applied to an individual thread, a process and all processes running with a particular
user ID or group ID, when resource consumption limits are exceeded.

These resource consumption constraints should follow today’s mechanisms for resource
exhaustion for individual processes and groups of processes.

Constraints must have actions that can be selected when an application is first started.
Such actions include “log”, “signal process” and “terminate process”.

This requirement applies to CPUs as well as memory.

7.4.5.3 Priority
Low

7.4.5.4 CGL Specification
Serviceability

7.5 Standards

7.5.1 IP Routing and Forwarding (CGOS-5.1)

7.5.1.1 Purpose
To support Virtual Routing and Forwarding for the Internet Protocol.

7.5.1.2 Description
The CGOS needs to support Virtual Routing and Forwarding (VRF) for the Internet Pro-
tocol (IP), including both IPv4 and IPv6.

A key capability used by the NEPs is the ability to forward network packets using IP.
This capability has lagged as new capabilities such as VPNs have emerged.

A network element that supports VRF contains multiple instances of routing and forward-
ing tables and looks like several independent routers to an external observer. At the
routing protocol level, each VRF instance is a separate router with its own router identity
and protocol state.

Each IP interface, e.g., Ethernet Virtual Local Area Network (VLAN), is associated with
exactly one VRF instance and is invisible to the other instances. Each VRF instance has
its own forwarding table, IPSec Security Association Database (SAD) and Security Policy

��TIV�XLVIEH�YPMQMXW

��WXMPP�HIJMRMXIP]�E�KET
EGGSVHMRK�XS�'+0

��RSXIH�MR�XLI�STIR
WIWWMSR�XLEX�XLMW�WIIQW
PMOI�E�VIEWSREFPI
VIUYIWX�ERH�GSYPH
TSWWMFP]�FI�MRXIKVEXIH
MRXS�QEMRPMRI�MJ
MQTPIQIRXIH�

��2IIHW�GPEVMJMGEXMSR
JVSQ�7'34)�

��7SYRHW�PMOI�E�KET�XS
'+0�

��-J�XLMW�MW�:6*�ERH
:0%2��MX�MW�JYPP]
MQTPIQIRXIH�XSHE]�
8YVR�FEGO�XS�7'34)�XS
MHIRXMJ]�WTIGMJMG�TEVXW
WXMPP�QMWWMRK�

��MJ�MX�MW�RSX�EFSZI�ERH
MW�MRWXIEH�RIX[SVOMRK
REQIWTEGIW�XLMW�MW
E�PSRK�[E]�SYX�ERH
HIJMRMXIP]�E�FMK�KET�

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
25(33�)

Database (SPD), packet filtering rules, transport protocol termination, and local IP ad-
dress space.

Each socket is associated with a VRF instance. A VRF-aware application can have open
sockets to multiple VRF instances at the same time, for connecting to multiple networks,
or for acting as an application layer gateway between networks. VRF does not require
separation of applications into isolated environments corresponding to different VRF in-
stances.

IP addresses used in different VRF instances can overlap because the instances are
separate and independent.

7.5.1.3 Priority
High

7.5.1.4 CGL Specification
Standards

7.5.2 IPv6 Extensions (CGOS-5.2)

7.5.2.1 Purpose
To provide support for IPv6 in NFS and NIS.

7.5.2.2 Description
The CGOS needs to provide support for IPv6, so that infrastructure components ex-
posed to the network can accept connections through IPv6, as well as IPv4. This capa-
bility includes support for IPv6 in the Network File System (NFS) and the Network Infor-
mation Service (NIS).

IPv6 is the next generation of the Internet Protocol (IP). Movement to IPv6 is rapidly in-
creasing. It must be possible to configure systems as only IPv4 systems, dual stack
(IPv4 and IPv6) systems, or only IPv6 systems. Only IPv6 refers to both the ability to
configure the system with only an IPv6 TCP/IP stack and the ability to enable all network
facing applications that access TCP/IP to function in such an environment. Currently,

• NFSv4 (here v4 doesn’t refer to IPv4) doesn’t support IPv6. The source code
doesn’t have any IPv6 socket calls. See RFC 3530 [6].

• NIS doesn’t support IPv6 but will probably be rendered obsolescent by the Light-
weight Directory Access Protocol (LDAP) and/or Kerberos. The source code
doesn’t have any IPv6 socket calls. RFC 2307 [2] describes the alternative usage
of LDAP.

The CGOS needs to provide support for IPv6 in NFS and NIS.

7.5.2.3 Priority
Medium

��6IXYVR�XS�7'34)�

��&VIEO�MRXS�X[S
WITEVEXI�KETW��2*7Z�
SZIV�-4Z��ERH�2-7
SZIV�-4Z��

��&SXL�ETTIEV�XS�WXMPP
FI�KETW�JVSQ�'+0
TSMRX�SJ�ZMI[��MW
2-7�-4Z��WXMPP�E�KET
JVSQ�'+37�4S:#

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
26(33�)

7.5.2.4 CGL Specification
Standards

7.5.3 Layer 2 Tunneling Protocol Support (CGOS-5.3)

7.5.3.1 Purpose
To support the Layer 2 Tunneling Protocol (L2TP).

7.5.3.2 Description
The CGOS needs to provide support for the Layer 2 Tunneling Protocol (L2TP).

Although TCP/IP over high-speed interconnects is at the core of today's telecommunica-
tions networks, other protocols, in particular L2TP, must be supported. L2TP is used to
move Point to Point Protocol (PPP) packets across the network.

Thus, the CGOS needs to provide support for L2TP, i.e, it must support:

• RFC 2661 [5]

Moreover, it must support L2TPv3, but with lower priority, i.e., it must support:

• RFC 3931 [7].

7.5.3.3 Priority
Medium

7.5.3.4 CGL Specification
Standards

7.6 Hardware

7.6.1 Discovery of Platform CPU Architecture (CGOS-6.1)

7.6.1.1 Purpose
To allow the discovery of the topology and other details of a platform CPU architecture,
such as the number and the sizes of the caches, to facilitate and optimize SMP pro-
gramming.

7.6.1.2 Description
The CGOS needs to allow an application to discover platform CPU architecture topology
and details, such as the number of caches and the sizes of the caches, to facilitate the
optimization of the use of multiple CPUs, the memory hierarchy and the interconnect fab-
ric. The CGOS needs to provide such architectural information in a format that is uniform
across platforms.

Many forms of SMP are available today in CG environments ranging from SMT to NUMA
and combinations in-between. The CPU configurations have a profound effect on per-
formance and stability. The scheduler in most operating systems (Linux 2.6, for example)

��'+0�LEW�HIXIVQMRIH
XLEX�0�84�MW�EPVIEH]
JYPP]�MQTPIQIRXIH�
6IXYVR�XS�7'34)��EWO
MJ�XLI�VIUYMVIQIRX�MW
JSV�4484#��-J�WS��MX�[MPP
VIQEMR�E�KET�HYI�XS
MRXIPPIGXYEP�TVSTIVX]
MWWYIW�VIPEXMRK�XS
1MGVSWSJX�W�4484�ERH
XLI�GYVVIRX��SYX�SJ�XVII
MQTPIQIRXEXMSR�

��-J�FSXL�EVI�VIUYMVIH�
XLMW�KET�RIIHW�XS�FI
WTPMX�MRXS�X[S�WITEVEXI
KETW��0�84�ERH�4484�

��'+0�;+�XS�HSGYQIRX
W]WJW�MRXIVJEGI�XS
HIXIVQMRI�XLMW��GEPP�XLI�
KET�GSQTPIXI�ERH
FIKMR��MQTPIQIRXIH��
TLEWI�SJ�'+0�'+37
JPS[GLEVX�

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
27(33�)

dynamically builds a view of the system based on the CPU topology, including caches
and threads. This view must be exported to application programmers (to a certain de-
gree some of that information is already available in /sys/devices/system/cpu directory).

The understanding of shared vs. private caches and threads is key to writing high per-
formance software. This architectural topology information must be available on demand
(system call or from /proc) to facilitate the necessary application partitioning early in the
design stage. This approach can be taken a step further, so that an application can de-
termine the topology dynamically and optimize its operations for the specific topology.

7.6.1.3 Priority
Low

7.6.1.4 CGL Specification
Serviceability

7.6.2 Latency API for SMP / Multi-Core Programming (CGOS-6.2)

7.6.2.1 Purpose
To support the notions of latency domain and locality domain, with the allocation of proc-
esses to latency domains and the scheduling of processes on CPUs within their locality
domains. To provide APIs that allow a process to determine the locality domain charac-
teristics of a system, including the memory latency, and also the communication latency
between processes.

7.6.2.2 Description
The CGOS needs to support the allocation of processes to latency domains based on
load and the scheduling of processes on CPUs within their locality domains. The CGOS
also needs to also provide APIs that allow a process to determine the locality domain
characteristics of a system, including the memory latency, and also the communication
latency between processes.

Shared memory multi-processor systems contain multiple CPUs and memory. Memory is
increasingly directly attached to CPU complexes. As a result, the cost of accessing
memory attached to a CPU complex other than the one on which the application is run-
ning is more expensive than accessing local memory. Furthermore, migration of a proc-
ess from one CPU to another can result in considerable cache refresh costs. As multi-
core systems become more popular, these kinds of systems will become commonplace
and the CGOS needs to provide support for them.

Therefore, the CGOS needs to support the notions of latency domain and locality do-
main. A latency domain is a set of CPUs with directly attached memory. In a system
where all memory is accessed with constant cost, there is only one latency domain. In a
locality domain, the virtual memory used by the processes is backed up by accessible
physical memory.

The CGOS needs to be able to recognize different latency domains within the system.
The CGOS needs to be able to allocate newly created processes among the latency

��6IXYVR�XS�7'34)��RIIHW
XS�FI�WITEVEXIH�MRXS
QYPXMTPI�KETW�

���QSWX�SJ�XLMW�MW�QIX�F]
291%��OIIT�KET��QEVO�MX
MQTPIQIRXIH�F]�291%�

���7IGSRH�XS�PEWX�TEVE�
WSYRHW�PMOI�TVSGIWW
EJJMRMX]���%WO�7'34)�JSV
GPEVMJMGEXMSR���-J�WS��GVIEXI
E�KET�FEWIH�SR�XLEX
TEVEKVETL�ERH�QEVO�MX
MQTPIQIRXIH�

���VIQEMRHIV�RIIHW�QSVI
HIJMRXMSR���YWI�GEWIW��
7YKKIWXIH�HYVMRK
[SVOMRK�WIWWMSR�XLEX�XLI
VIQEMRHIV�QMKLX�FI�EW�
QER]�EW�XLVII�
VIUYMVIQIRXW#

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
28(33�)

domains based on load (current CPU consumption, memory usage). Once allocated,
schedulers must attempt to maintain locality within the domain (i.e., favor CPUs in a lo-
cality domain). The CGOS needs to provide APIs that allow a process to determine the
locality domain characteristics of a system. These characteristics include:

a) The number and composition of latency domains in the system (number of CPUs,
amount of memory)

b) The domain to which a process is assigned

c) The latency between two latency domains

d) The allocation policy applied to an address range.

The APIs would also allow the domain to which a process is assigned to be modified and
the application policy applied to an address range to be modified.

When a process connects to Unix System V shared memory or memory mapped file
data shared with another process, the system might have used a round robin memory
allocation policy when mapping the shared virtual memory to physical memory. Such a
policy is used in the expectation that many processes will access the shared memory
and the physical memory is best spread across multiple memory banks.

Some memory segments are used exclusively by a single domain, and a different mem-
ory allocation policy might be appropriate. The ability to set the memory allocation policy
for a memory segment is required. The designated policy is applied when the next proc-
ess touches the memory segment, assuming that the memory segment has not already
been instantiated.

Besides the memory latency, the APIs must provide information on the communication
latency between processes and the number of times a process has been scheduled on a
different CPU.

The SCOPE Alliance recognizes that additional definition is required around the details
of this gap; therefore, the Alliance welcomes the opportunity to collaborate with industry
ecosystem partners and specification groups to develop additional specificity in this area.

7.6.2.3 Priority
Medium

7.6.2.4 CGL Specification
Hardware

8 Conclusion
In this document, the SCOPE Alliance CGOS Working Group has identified gaps in the
Carrier Grade Linux (CGL) 4.0 requirements specification as they apply to telecommuni-
cations products and services. This document contains 16 gaps that fall into the follow-
ing CGL categories:

• Availability – 1 gap

• Performance – 1 gap

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
29(33�)

• Security – 4 gaps

• Serviceability – 5 gaps

• Standards – 3 gaps

• Hardware – 2 gaps.

Moreover, it provides recommendations on the priorities for implementing these features
in Carrier Grade Linux and other Carrier Grade Operating Systems. The appendix of this
document contains one functional consideration (driver hardening), three non-functional
considerations (application binary compatibility, application compatibility between distri-
butions, extended support model), and one erratum (POSIX memory protection) related
to the CGL 4.0 requirements specification and Carrier Grade Operating Systems that are
not identified as gaps in this document.

The SCOPE Alliance CGOS Working Group has found it difficult to identify gaps for the
Carrier Grade Operating System. Some gaps represent features that are not included in
the CGL 4.0 requirements specification but that are already implemented in the kernel.
Such features should be included in the CGL specification, and need to be validated for
conformance.

LSB compliance is one of the most critical needs of the NEPs, because it reduces the
costs of developing telecommunication systems and porting applications [8]. The
SCOPE Alliance CGOS Working Group considers it critically important to validate con-
formance and to be able to configure kernel functions. When validating conformance, it
must be possible to turn on configurable kernel functions and to perform additional com-
pliance tests. It is essential that the Linux vendor perform validation testing, even if it is
incremental and initially only partial, starting with performance and availability.

Given the rapid pace at which new technologies, such as new CPU architectures, are
emerging, the specification and implementation of Carrier Grade Operating Systems are
iterative, on-going processes. Consequently, this document is a living, on-going docu-
ment, rather than the final word on this topic.

The SCOPE Alliance recognizes that more detail is required around the Trust Mecha-
nisms, Driver Hardening, and SMP / Multi-Core Tools gaps described in this document.
The Alliance welcomes the opportunity to collaborate with industry ecosystem partners
and specification groups to develop additional specificity in these areas.

Through its work on identifying profiles and gaps, the SCOPE Alliance aims to accelerate
the adoption of Carrier Grade Operating Systems for telecommunications equipment and
applications, and to facilitate interoperability between telecommunications platforms and
portability of applications.

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
30(33�)

9 Appendix
This appendix identifies one functional consideration, three non-functional considera-
tions, and one erratum related to the CGL 4.0 requirements specification and Carrier
Grade Operating Systems more generally.

9.1 Functional Considerations
This section of the appendix relates to the need for driver hardening for Carrier Grade
Operating Systems.

9.1.1 Driver Hardening

9.1.1.1 Purpose
To provide support for the hardening of drivers, which includes fault containment, fault
avoidance and resilience, fault and error detection, fault and error notification, logging of
errors for fault diagnosis, and fault recovery.

9.1.1.2 Description
The CGOS needs to provide support for the hardening of drivers to ensure that the de-
livered services are available and reliable.

Memory, processors, disk drives, interface cards and the buses connecting them are be-
ing delivered with ever increasing levels of hardware integrity. Such increased levels of
hardware integrity provide some degree of mitigation against the hazards of ever in-
creasing component density.

The CGOS needs to provide interfaces and mechanisms to support the hardening of
drivers, including fault containment, fault avoidance and resilience, fault and error detec-
tion, fault and error notification, logging of errors for fault diagnosis, and fault recovery.

The CGOS and the drivers must provide support for fault containment, which includes
protection of the kernel from corruption by the drivers.

The drivers must be written so that they are as resilient as possible to hardware and
software faults, both transient and permanent.

The CGOS and the drivers must support fault and error detection. The drivers must
check for the presence of errors, particularly when accessing memory and data and,
where feasible, must also verify the reasonableness of returned data.

The drivers must provide fault avoidance by recognizing incipient faults in the devices
and avoiding the use of hardware that is about to fail. Tracking correctable ECC errors
and retiring memory that has seen too many errors might avoid an uncorrectable error
and perhaps a service outage. Extending this capability to other system components,
particularly disk drives, is even more desirable.

The CGOS needs to provide programmatic/administrative interfaces that allow the driv-
ers to report errors and to notify the users of device failures.

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
31(33�)

The CGOS needs to provide programmatic/administrative interfaces to support the log-
ging of device errors and data errors on stable storage in order to enable subsequent
fault diagnosis.

The drivers must provide support for fault recovery, including the ability to restart the
drivers transparently to the applications and without damaging the data on the device.

Note: The SCOPE Alliance recognizes that additional definition is required around the
details and priorities of driver hardening; therefore, the Alliance welcomes the opportu-
nity to collaborate with industry ecosystem partners and specification groups to develop
additional specificity in this area.

Also, see "Failure Resilience for Device Drivers" by J. N. Herder, H. Bos, B. Gras, P.
Homburg and A. S. Tanenbaum, which won the best paper award at the 37th IEEE/IFIP
International Conference on Dependable Systems and Networks [1].

9.1.1.3 Priority
High

9.1.1.4 CGL Specification
Availability

9.2 Non-Functional Considerations
This section of the appendix identifies three non-functional considerations (application
binary compatibility, application compatibility between distributions, extended support
model) related to Carrier Grade Operating Systems.

9.2.1 Application Binary Compatibility

9.2.1.1 Purpose
To provide application binary compatibility between releases of a distribution from the
same vendor for the same CPU architecture.

9.2.1.2 Description
The CGOS needs to maintain binary compatibility between releases of a distribution from
the same vendor for the same CPU architecture to enable existing applications to run
unmodified on a new release.

Recompilation must not be necessary to achieve compatibility. Such compatibility means
that an existing application developed on an older release of the operating system will
run on the newest version unchanged, taking full advantage of the new and advanced
operating system features. This requirement translates into lower development, testing,
and deployment costs.

9.2.1.3 Priority
High

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
32(33�)

9.2.1.4 CGL Specification
Serviceability

9.2.2 Application Compatibility between Distributions

9.2.2.1 Purpose
To provide application compatibility between different distributions, from different ven-
dors for the same CPU architecture, that comply with the same CGL specification ver-
sion.

9.2.2.2 Description

The CGOS needs to provide application compatibility (both source and binary) across
different distributions from different vendors, for the same CPU architecture, that comply
with the same CGL specification version.

9.2.2.3 Priority
High

9.2.2.4 CGL Specification
Serviceability

9.2.3 Extended Support Model

9.2.3.1 Purpose
To ensure that the product support model for the CGOS scales to provide coverage for
the lifecycle of the NEPs’ products.

9.2.3.2 Description
The CGOS support model must scale to provide coverage for the duration of the lifecycle
of the NEPs’ products.

The NEPs have very specific product lifecycle requirements. Because the lifecycles of
NEPs’ solutions are long -- 12 to 36 months for development, integration and validation,
24 to 36 months for deployment, and then 5 years plus for maintenance, NEPs typically
require that software and hardware vendors provide product support for an extended pe-
riod of time, well beyond that of standard support policies.

The lifecycle of the CGOS needs to align to the lifecycles of the applications developed
to run on it. For example, if an application is developed and released with a lifecycle of
10 years, the CGOS on which it is to be run must have a support model that provides
support for the duration of the application lifecycle.

9.2.3.3 Priority
Medium

Carrier Grade Operating Systems

Gap Analysis v2.0, October 23, 2007

Copyright © 2007 Scope Alliance. All rights reserved. Page
33(33�)

9.2.3.4 CGL Specification
Serviceability

9.3 Erratum
This section of the appendix contains an erratum for the CGL 4.0 requirements specifica-
tion that apparently was unintentionally omitted from that specification.

9.3.1 POSIX Memory Protection

9.3.1.1 Purpose
To support POSIX Memory Protection (MPR).

9.3.1.2 Description
The CGOS needs to support POSIX Memory Protection (MPR).

Memory protection is a fundamental architectural characteristic of a modern operating
system. It is prerequisite to build fault-tolerant systems and to achieve reliability of CG
systems.

Memory protection provides a means to manage the memory access protections (read,
write, execute, no-access) of any part of a process address space, with the granularity of
a memory page. It is usually implemented by a combination of hardware and software.

In a shared memory environment, write restriction on data pages prevents memory data
from being corrupted by a faulty process. Execution restriction prevents the introduction
of new executables into a process memory space.

The CGL 4.0 requirements specification does not explicitly list POSIX Memory Protection
(MPR).

The CGL 4.0 Standard requirement STD.2.3 does list MC2, which at first glance would
appear to include MPR. However, the definition of MC2 is satisfied by either Memory
Mapped Files (MF) or Shared Memory Objects (SHM) or Memory Protection (MPR).

Therefore, it is possible (albeit not likely) that MPR could be omitted from an implementa-
tion of the CGL 4.0 specification.

This erratum requires the CGOS to support MPR.

9.3.1.3 Priority
High

9.3.1.4 CGL Specification
Standards

